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Summary. Characteristic methods are known to handle advective flow bet-
ter than traditional Galerkin methods and allow large time steps to be taken
when compared to standard time-stepping methods. In this paper, we in-
vestigate a characteristic-Galerkin approximation to the 2-dimensional sys-
tem of shallow water equations. We derige® ((0,7); £2(£2)) bounds

for elevation and velocity, showing these to be optimal for velocity in
L£%((0,T); H' (£2)).
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1. Introduction

Interestin modeling shallow water environments, such as bays, estuaries and
other coastal waters, has spawned a generation of shallow water simulators.
Because of the complexities of coastal geometries, and the need to allow for
domains which incorporate parts of the deep ocean, many of these simulators
are based on finite element methodology. We refer, for example, to the
ADCIRC (Advanced Circulation) model developed by Luettich etal. (1991),
which is a widely used shallow water simulator based on Galerkin finite
elements.

Inthe shallow water equations (SWE), diffusive effects can often be small
relative to advective acceleration, for example, in channels and narrow inlets.
Itis well-known that standard Galerkin schemes do not handle advective flow
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Fig. 1. Vertical cross-section depicting elevation and bathymetry

very well unless small time steps and highly refined grids are used. Most
shallow water simulators have some stabilizing mechanisms built-in. For
example, the ADCIRC simulator is based on a reformulation of the first-
order continuity equation into a second order wave equation, first proposed
by Lynch and Gray (1979). This approach allows for the capturing of so-
called “2Ax waves,” but still has problems handling highly advective flow.

In this paper, we propose using characteristics methods as a means to
handle advection with the additional benefit of an improved time truncation
error when compared to standard finite-difference time-stepping schemes.
The method we propose is similar to a Characteristic-Galerkin approxima-
tion derived recently by Zienkiewicz and Ortiz (1995a,1995b), with promis-
ing numerical results. Their method relies on a Chorin-type projection with
fractional time-stepping along the characteristics in the velocity equation.
These characteristics are approximated using a Taylor expansion assuming
that the foot of the characteristic is very close to the nodal point around
which the expansion was taken. Our method differs in that we use finite-
difference time-steps along the characteristics in both the continuity and
momentum equations, and do not perform a Taylor expansion of the solution
at the foot of the characteristic. We will describe and analyze this particular
Characteristic-Galerkin finite element method for solving the SWE.

The SWE are obtained by depth averaging the 3-dimensional incom-
pressible Navier-Stokes equations using appropriate free-surface and bound-
ary conditions along with a hydrostatic pressure assumption (Weiyan (1992)).
Let&(x1, z2,t) be the free surface elevation above a reference plane and let
hy(z1, z2) be the bathymetric depth under that reference plane (see Fig. 1)
sothatH = £ + hy, is the total water column. The SWE are valid in regions
where the horizontal length scaleis much greater than the vertical length
scaleH, and the underwater topography doesn’'t change too fast. It should

be noted that the latter two properties imply tRéi,, is small in the sense
oh ohy, | . d|hy d|H|

)
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Letw = (u(xy,z2,t) ,v(z1,22,t))T be the depth-averaged horizontal
velocities. Then, the SWE are given by the continuity equation (CE)
23
1 = ‘(uH)=0
1) 9t T V- (uH)
and the momentum equations (NCME), written here in non-conservative
form,
ou
(2) E%—(u-V)u—i—gV{—,uAu—i-Tbu—l—F:O.
Here,0 < p is viscosity,g is acceleration due to gravity;, (&, u) =

cfivuijf”g is a bottom friction function, and’ is a forcing function con-
sisting of surface and body forces such as Coriolis effects, surface wind
stress, surface atmospheric pressure and tide potentials; for instance,
(fekXu — Tws + Vpa — gVN). This form of F is due to Luettich et al.
(1991), and we have shown in Chippada et al. (1999) how such terms can
be analyzed in a finite element setting. It should be noted that the final form
of the viscosity term is a point of contention in the literature - other forms
of it are &£ A(wH) (Bernardi and Pironneau (1991)) afidv- HVu (Gent
(1993)).

The rest of this paper is outlined as follows. In Sect. 2, we introduce no-
tation and definitions. In Sect. 3, we review the characteristic formulation of
the SWE, introduce the discrete weak formulation, and describe the assump-
tions we will need in our analysis. In Sect. 4, we introduce the finite element
model used to approximate the SWE as well as additional assumptions we
will need. In Sect. 5, we review the characteristic equation and properties
therein. In Sect. 6, we derive an a priori error estimate based on a digérete
projection. The proof of the error estimate relies on an induction argument
to obtain£> boundedness of the Galerkin approximations.

2. Preliminaries

Let 2 be a bounded polygonal domain iR andz = (z1,22) € IR2.
Moreover, let2 = 2 U 912 whereds? is the boundary of2 c IR?.
The £? inner product is denoted by

(0w) = /Q powds,  p.we LX),

where " refers to either multiplication, dot product, or double dot product
as appropriate. We denote thénorm by| ||| = ||| 2(o) = (#,¢)"/*.In
R"™ a = (aq,...,ay) is ann-tuple with nonnegative integer components,

o™ o%n
D® = D ... D% —
! "o 0zt Oap
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and|a| = >0 o
For ¢ any nonnegative integer, let

W ={p e L™(R)| D% e L™() for |a| < £}

be the Sobolev space with norm

1/m
lellwe, (o) = (Z D%?m(g)) :

laf<e
Moreover, let
Wi ={p € L®(R)| D*p € L>(12) for |a] < ¢}
be the Sobolev space with norm

= D“ ()
lellwe () Q@EH Ol g ()

|
We will also use the special spach$ = WS. For relevant properties of
these spaces, please refer to Adams (1978).

Furthermore, observe that’ are spaces dR-valued functions. Spaces
of IR™-valued functions will be denoted in boldface type, but their norms
will not be distinguished. Thus£2(2) = [£2(£2)]" has norm||p||* =
S il HE(92) = [HH(2)]" has norm |51 ) = Yint Yjaj<
| D4 |*; etc.

For X, a normed space with norfp- || x and a mapf: [0,7] — X,
define

T
1Mo = [ IO at

£l zooo,m):x) = sup [1f( )] x.
0<t<T

We define a temporal subdomain[6f 7] by Ja, = {t* | t* € [0,T], tF =
kAt, k=0,...,N, NAt=T, At > 0}.

Let 7 be a quasi-uniform triangulation d® into elementsy;, i =
{1,...,n7}, with diam(w;) = h; andh = max; h;. LetS;, denote a finite
dimensional subspace #f' (£2) defined on this triangulation consisting of
piecewise polynomials of degree less than or equaj te 1, and satisfying
the standard approximation property

inf |16 = <llyeo() < Koh ™ *l|6llae(y, ¢ € H'(2) NH (1),
SESH
forintegerssg, £ and0 < so </ < s; and wherédg is a constant independent

of h and¢.
Moreover, we will use the following standard results.
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Lemma 1 (Inverse estimate).(See Brenner and Scott (1994).) Lete
(0,1] and S, € W, (£2) N W (£2), where(? is a polyhedral domain in
R" 1 <p<ool<qg<ooandd < m < r then there exists a
Ky = Ko(r,p, q) such thatvv € Sj,, we have

—r4mi 072_2
||U||W5(Q) < Ko™ rtmin(0.3 q)||U||Wg"(Q)'

Lemma 2. Let0<¢</¢<s;.Letp € £ ((0,T); H'(£2) N H*(£2)) andlet
¢ be the corresponding? projection of into Sy,. If for some integey > 0,
(2) ¢ € £2((0,T); HY(2)NH(2)), then (&) ¢ € £2((0,T); Sn)
and

|G (o)

for some constank’y independent o, g, h, £, wheres = min(¢, s1).

< Kth*qH(%)%‘

L£2((0,T)H9(2)) L2((0,T)Hs ()

There will also be occasion to employ the following lemma whose proof
can be found in Brenner and Scott (1994) in Corollary 4.8.9.

Lemma 3. Let ¢ € WL (£2) and let be the£? projection of ¢ into
Sy. Then, the first-order spatial derivatives ¢fare bounded above in
L ((0,T); £L>(£2)) by a positive constank.

Finally, we letK, K;, (i = 0,1,2,..) ande be generic constants not
necessarily the same at every occurrence.

3. Characteristic shallow water equations
3.1. The characteristic form

The characteristic formulation of the SWE is based on manipulating the gov-
erning equations into a form in which the time derivative and the advective
term are absorbed into a directional derivative.

Let T be a unit vector in the directiofu, 1) so thatr = 1 (u, 1), with

a = |r| = y/|u|? 4+ 1. Then, define

9 _ 9¢
aa—T =u-Vo+ o
as the directional derivative af in the directionT as similarly done in
Douglas and Russell (1982) .

Thus, we can write SWE ioharacteristic formas

0H
3 4L H(V-u) =
e a5+ H(Veu) =0,
ou
— +gV(H — hy) — pAu+ npu+ F = 0.

() @ or
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Fig. 2. Characteristic

Douglas and Russell (1982) observed theoretically that itis the much smaller

norms of% andg% compared to the norms éjtTH and%%‘ (obtained in
standard time-stepping procedures) that allow larger time-steps to be taken
in advection-dominated flow.

The time-stepping procedure (along the characteristic lines determined
by the method of characteristics) in combination with any spatial discretiza-
tion has been referenced in the literature as the modified method of char-
acteristics (MMOC). Specifically, the MMOC together with the Galerkin
finite element method constitute the Characteristic-Galerkin (CG) method.

Parametrizinge with respect ta, the characteristic is the local solution

to the initial-value problem

BT _ (1), 1), te (th=1 ),
5) 2(t) = a. }

The solution is computed by backtracing along the characteristictustil
t*=1 is reached to determine the “foot” of the characterigtisee Fig. 2).
We approximate the solution to this problem using Euler's method, let

& =x — u(x, t*)At.
In the rest of the paper, lgt= f(&) andf*(x) = f(x,t*).

3.2. Weak formulation

A weak form of (3)-(4) is

(6) <agil,u> + (H(V-u),v) =0, YveH (),

or
(7) + (npu, w) + (F,w) =0, VYw e H (),
where we assum@, ) satisfy the following initial conditions
(8) H(m70) = HO(m)7 u(ma O) = UO(x>

(a52.w) = ol =~ ). T0) + (V. V)
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3.3. Some assumptions

To avoid technical difficulties associated with implementing boundary con-

ditions along characteristics we shall assume that the soluti@fpisriodic.

Hereafter, we shall understand that each Sobolev space is a periodic Sobolev

space o2 and understand the meaning of the associated norms accordingly.
We need to list some additional assumptions.dlet a positive integer,

¢ < s1. Suppose that fofz, t) € £2 x (0,T],

Al. the solutiong H, u) to (6)-(8) exist and are unique,

A2. 3 positive constant#/, and H* such that,, < H(x,t) < H*,
A3. u is a positive constant,

A4. F(x,t)is bounded,

A5. Hy(x) € HY(92),

AB. ug(x) € HE(92),

A7. H(z,t) € H/(2) N WL(R2), te (0,T),

A8. u(z,t) € HY(2)NWL (2), t€(0,T).

A9. T and 2% areinL? ((0,7); L2(£2)).

4. Characteristic-Galerkin finite element approximation
4.1. Defining the finite element approximations

Define the Characteristic-Galerkin approximation&io u) to be the maps
Hy: Jaz — Sh, up: Jar — Sp. Let the approximate characteristic be
denoted by

& =x — uf(x)At.

Let f = f(&). Then, Characteristic-Galerkin approximatiofi§}’, u})
satisfy

HF — 1
©) (W‘,v) + (H};ﬁ(v-ui),v) =0, Yvesy, k=1,

(#50 )  G7) i )

(10) + (Tb’;u;g,w) + (ka) —0, YweSh k>1,



246 C.N. Dawson, M.L. Mamez-Canales

with initial conditions

HY) = Hy(), up = (),
(1) R 3
H} = Hoy(%), @ = (&),

whereH, € S;, andug € Sy, are the£? projections offfy andu.

In the sections that follow, we will derive an a priori error estimate for
the Characteristic-Galerkin method described here.

4.2. Boundedness assumptions

Given £2 projectionsH € Sy, and@ € Sy, of H andu, we denote the
projection errors in elevation and velocity as

Yy = (H, — H) and v, = (u, — @),

respectively; and we also denote the approximation errors in elevation and
velocity as

0y = (H — H) and 0, = (u— ).

In order to derive our estimate, we make some boundedness assumptions
on the approximate solutions. We then show thatifand At sufficiently
small, and for; sufficiently large, we can remove the estimate’s dependence
on the assumed bound of the approximations, being dependent instead on a
smaller bound of the&? projection of the true solution. First, for any time
t, let K* satisfy
|H| + |a| + |Va| < K*.

Such a constant exists by Lemmas 2 and 3. We then assume thatfor
0,..., N there exists positive constanks., < fg and K** > 2K* such
that

Bl. K. < HF < K**,

B2. !uﬂ < K**, ‘Vu’ﬁ! < K**,

5. Characteristic equation and properties therein

Before bounding terms, we will need to show that the characteristic equations
have certain properties.

The following theorems have been proven in Russell (1985) and Ewing
et al. (1984).
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Theorem 1. Supposea* € WL (02). Fort* € Ja, tF > At, let Fg(x) =
x — uF(x)At. Then,F; is a differentiable homeomorphism faxt suffi-
ciently small.

Theorem 2. Let AssumptioB2 hold. Fortk € Jag, th > At, let Fy(z) =
x — uf(x)At. Then,F, is a differentiable homeomorphism faxt suffi-
ciently small.

Now we can obtain the following generalization of a lemma found in
Dawson et al. (1989).

Lemma 4. Assume that? (z) has bounded first partial derivatives in space
Yk, (AssumptioB2). Then, forAt sufficiently small, an arbitrary function
f € L£%(9) satisfies

i [(F.F) = (5.0)] < Bl + el

where,
K1 =Ky (HV‘uhHEOO(Q)) :

Proof. Following closely the arguments of Lemma 3.1 in Dawson et al.
(1989), let
y =z — uf (x) At = Fz(x).

From the boundedness assumptions on the first-order spatial partial deriva-
tives ofuy,, observe that the inverse of the Jacobian of this transformation
satisfies

‘ij:(m)‘l‘ — 1+ Veub(2) At + O(AR).

Therefore, given that the differentiable homeomorphisg(xz) maps the
periodic{? into itself, consider the following change of variables:

(7.4) = [ rwswyae = [ 1) i) |Tsym | dy
/ f(y 1 + Veul (z) At + O(AtQ)} dy.
Now, subtracting f, f) from (f, f) yields

Kf

-, f)}

f)
{ 1 + Veul (z) At + O(At2)] dy
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- [ @) do

S { | t)5(w) [1+ V(@) At -+ 0(a8)] dy

- [ swiw dy}

/f ) [Vou@) + 0(an)] dy = Wi+ W,

where the second equality comes from the fact#fatx) is a differentiable
homeomorphism onto itself.

In Dawson et al. (1989), ter/; (with V-u(zx) instead ofV-uf (z))
was bounded by first adding and subtractifig:(y) to get two termdi/y,
and Wy,. The second termij’y;, was straightforward to bound using the
assumption tha¥ - is bounded iC*>°({?2). The first termi¥;, was bounded
using the Mean-Value Theorem &htu, assuming thal’ (V-u) exists and
is bounded inC*>°(£2). Here, we weaken these assumptions by not splitting
W1 into two terms and instead writing

W, = /f y)(V-ul(z)) dy
- [ 1@ (vt (7' @) ) d
< K IfI%

where; = K (|[Vuf| g ) -
Now, note that forA¢ sufficiently small,

A
W, = 244 /f y) dy < €||fI>

Therefore,
o [(FF) -] < i <HV'“ZHMQ>> 1112+ ell 12

We will also need to develop another technique based on the definition
of the characteristic map, as done in Russell (1985), Ewing et al. (1984) and
Dawson et al. (1989).

For a general functiofi(x) defined over?, the expansion of (&) about
f(@) using Taylor’s theorem with integral remainder gives,

Tof

i 0z

f@) - f@)= | Z-(z)dz
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where z is the unit vector in the directioi: — &. Letting z € [0, 1]
parametrize the segment fraifz = 0] to €[z = 1], then

1
f@) - f@ = | [ G20+ i @-a
=Zi(z,x) (T —x),
where,
1
Ir(z, ) = 8—f((l —Z)x + zx) dz

andg(x) € L7(£2), Then,
| st (@) - @) da
2
/ If(z,z) (x — ) g(x) dx
kP4

< Nl ooy 1 — 1] ooy 19l 2o
<

KVl o1& = 2l 2o 19l 27 (52)-

Proof. Ewing et al. (1984) establish thHt, .. (x) is a differentiable homeo-
morphism (except they use an extrapolalted approximate velocity instead of
the approximate velocity proper) using arguments similar to those showing
that 7, (x) is a differentiable homeomorphism. Then, we can establish the
following results.

Casep € [1,00):
1 af
~ A~ p _ ~J . . —
/Q]If(:c,mﬂ d:z:_/Q/O o (Ym’m(m)) dz
1 af
S/O /Q @(Ymm(@)
Lettingy = Y',t@(m) and changing variables above, yields
1 8f
Ze(z,z)lP dmg/ / —
[ m@aras [ [ 12w
1
Sy
0 2

P
dx

P
dx dz.

p
‘Jyfm(w)—l‘ dy dz

p

of _
@(Z/) dy dz
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Thus
| 1T@ @) do < KVl

Casep = o is straightforward. O

6. Error estimate
6.1. The error equations

Write down the error equations resulting from subtracting (6)-(8) from (9)-
(11), respectively, as

vh— i
At ’
- x k—1 ~ k—1
N H —H
- At Y At 'Y

+ ((H’“ — HNVb, v) + (HkV-(uk - uz),v)
(12) _ (Ck,v) L YoeS, k>1,

and

N——

k Tk—1
<’l’ A¢ >+u(v¢k Vw

k_ 1.k
¢ (Tbh w>

B Bﬁ B éi—l W) ,l:kal B ﬁk*l g
N At At ’

- (g(H’“ — H}), V-w) +u (Veﬁ, vw)
+ (Tbkeﬁ,w> + ((Tbk — Tbﬁ)ﬁk,w>

(13) + (F’“ - Fﬁ,w) + (ak,w) , Yw € Sy, k>1,
with
(14) W =% =0, ¢¥i(z) =) =0,

and the truncation term@ ando* are defined as follows
ok = akaHk ([ H(z,t") - H(z, ")
or At ’

ou u(x, tF) — u(xe, th1)
k_ k - ) )
0" =al < , ) .
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6.2. Bounding the errors

Sum together (12) and (13) using test functiens= % andw = ¥*.

Now use the inequalitya — b,a) > 1(a® — b?) once witha = ¥ and

b = ¢% 1 and a second time with = 4 andb = ¢/%~*. Use the definition
2

of the £2 projection and finally, add and subtract the two ten‘m/éfl H

and||4%~!|| to the result to obtain

g (81~ 71 + o ([~ o)
[t [+ [kt

1 “h—1|[? qu
< sz (19 = 1ot

. x k—1 ~ k—1
(et Y (HT AT
At 0 TH At PTH

+ (0 — k) Vul, vl ) + (HV-(05 - wh), vl )
— (¢t uk)

v (127 - )

+ M¢k _ M¢k
At 0T At T

~ (908t —wh), vk ) + o (V6E, Vot

+((nF = mhyat gl ) + (FF = Figh) — (o8, vh)
(15) =T+ +Ts+ S+ +Ss.
From Lemma 4, withf = %! in T) and with f = %=1 in S}, we
immediately have that

2 2
Ty < K|l + o[l |

)

R

Using Cauchy-Schwarz, assumptions A2 and A3, and the inequélity
ea® + Lb?, the bounds offy, T5, Sy andSs are straightforward:

)

2 2 2
7 8o [ s ol | ol
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T5S€

)

ool a0t ot [

9

v et

2 L2
| =+ e

k 2 k 2
S e

Using the definition of th&€? projection, assumption A8, the Mean Value
Theorem, and Cauchy-Schwarz, we get

T, = Alt/ (ek gk 1)1/1Hda:
_ Ait /Q (0n* = 0571) ly do

< 70| e = sl o |5
= [0 e e 5]
< s+

Note, that the term| V6" ~*|| accounts for the suboptimality of the error

estimate we will derive. Douglas and Russell (1982) handle a similar term by
nk—1 Gk 1

k _
bounding(eH AetH ) in the H~! norm since the+ O Y

HH(R2)
HQH’“”H. However, the test function must then be measured inHhe
norm. Since we won't have a term on the LHS of the error equations in
which to hide this latter term, we do not find it useful to apply a duality
argument.

Similarly,

Sy = Alt/(ek fjl)zpﬁd:p
< v o

The bounds off3 and S5 can be determined using a parametrization
argument made in Ewing et al. (1984) and in Russell (1985). Use Lemma 5

with g = 4% andf = H"~!/Atin T5 and withg = v, andf = a*~!/ At
in S3. Recall from Lemma 2 thaf H*~1 € £°(2) andVar~! € £2(92).
Finally, use the inequalitfab < ea® + ;-b%) to obtain

~k—1

A e e

s = k]
£2°(£2)
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2
)

k|2 k|? k
< &Ju ||+ wel o]+ on

ak—l - ﬁk*l
o= [ (22557 v < ]
0 t

k|2 ik
< 2| |||+ & o

k k
u —uhH

|

In boundingTy andSg, recalla = |7 andHa“Hm@(Q) is bounded by
assumption A8. Now, following Russell (1985), we find

2 *19%H ||
k <KAt/ || dt
HC H - th—1 oT2 ’
2 tk 2 2
Ha’“H gKAt/ a—g dt
th—1 87’
to get
tk 2 2
0°‘H 2
Ty < KAt — | at KH ’fH
6= /tkl oT? + Vi
th 2 2 2
Sg < KAt/ 8—’; dt+KH¢ﬁ .
tk—l aT

To get the bound o155, we recall the bound obtained for the same term
in Chippada et al(1999). Recalling Lemma 3 and assumptions B1 and B2,
we obtain

Se < K [H%H2+ HGZHQ + WZHQ]
VK [HBﬁHzﬂLH%HZ]'

Finally, to get the bound o087, we again recall the bound obtained for
the same term in Chippada et al(1999). From assumptions A2, A4 and B1,
we obtain

9k .k
S7 < (fckxal;,’l,bﬁ) + < Zk};b;gHaTws"/’Z)
h

2 2 2 2
< s ([l o) - o+ o]

Multiplying (15) by At, summing ovek, k = 1, - - -, NV using the bounds
onTiy,---,Ss, and collecting terms yields

N 2 N
g1+ gl 1 X2 [k 2+ S v
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< S IwulP + Sl +62HwkH At+KZH¢HH Al

o> ORI NRRRES A
(16)  +KAt? 22 + KAt? Pu .
72 | e20,m)52(2)) 02| 2122

Hidee > r HVq,bﬁHQAt on the left side of (16) and use the fact that
9 =0,4Y =0, to get

1 1 N 2
gwwzu?+5uw5u2+21!ﬁwz

N
H 2
+2k§_juwuu At

N
)
k=1
2 2 2 2
17) +KAL ’8@[ ’81; .
O || 20mycz)) 11977l e2(0,1)2(2))

Finally, apply the discrete Gronwall’s Lemma to obtain

N
oI+ [eaIl+ 22 1Vl + IV9.12] At
=1

_ 2
=) o[22 e = W Y
H1(2) H1(2)
2 2 2
(18) +AP£ ‘Mj +‘81; ,
02 [l c2oryc2) 1197 c2(0.1)2(2)

whereK = exp (fo:l (1 Atk ) At) K, = 2max{K>, K3}, and At
is sufficiently small.
Therefore,

N
1P+ Y17 + S Ve, lPat < K (a0 + Ar2).
k=1
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To complete the proof, we use the same argument as in Chippada et al.
(1998), namely, when\t = o(h), s; > 3,¢ > 2, we obtain forp = { H, u}
(with ¢, understood to mean the already defidégdandu,,, respectively):
o] < L] + 8",
< Kh! (hH + At) + K*
< 2K*
< K™,

and
1Y = HY — (0} — )
> H, — Kh Y (W + Ap)
> H,/2
Finally, balancingAt andh, we find that ifAt = o(h?),s; > 4,¢ > 3, then
Vel | < |Valf
< |vel| +|val|

N , 1/2
< KAt /2p1 (Z vaﬁ At) + K*
k=0

< KA Y2p! <hl‘1 T At> + K* < 2K*.

Thus, we have proved the following:

Theorem 3. Lets; > 2 and1 < ¢ < s;. Let (H (-, t*),u(-, t*)) be £2-
periodic solutions to (6)-(8) at time= t*. Let (H}, u}) be the Character-
istic -Galerkin approximations toH, u). If assumptions A1-A9 hold, with
reasonable assumptions on surface and body forces, and\wihfficiently
small, therd a constant’ = K (T, s1, Ky, K*, K., K**) such that

HH(ac,tN)—H,JlVH + Hu(a:,tN) —uhNH

N 1/2
+ (Z |V — VUhHQAt> <K (h“ + At) .

k=1

If h, At are sufficiently small, in particulai\t = o(h), s1 > 3 andl > 2,
then we can remove the boundedness assumptiomg and onH,, but not
on V-uy,. Finally, for i sufficiently smallAt = o(h?), s; > 4 andl > 3,
then

K = K(T,s1, K., K*).
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Remark 1The scheme described above may be made semi-explicit, thus
decoupling (6)-(7), by using an extrapolated veIocEycﬁj = 2uﬁ‘1 —

qu‘2 in determining the approximate characteristic, and in lagging the term

H(V-uy,) in (9) by evaluating it at*—!. The estimates above carry through,
at the expense of some additional time truncation error terms. In particular,
we obtain arO(At) term involving the time derivative off (V-uy,).
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